ش | ی | د | س | چ | پ | ج |
1 | 2 | 3 | 4 | 5 | 6 | |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 |
دسته بندی | ریاضی |
فرمت فایل | docx |
حجم فایل | 469 کیلو بایت |
تعداد صفحات فایل | 136 |
جزوه ریاضی در باره مثلثات و ...
کلیات :
هر مثلث سه ضلع و سه زاویه دارد . مجموع سه زاویه ی هر مثلث است. بنابراین ، اگر دو زاویه از مثلثی معلوم باشد ، می توانین زاویه سوم را حساب کنیم . زاویه های مثلث را دو جزء و ضلع های آن را سه جزء به حساب میآوریم . به این ترتیب ، هر مثلث پنج جزء اصلی و تعدادی جزء فرعی (میانهها ارتفاعها و نیمسازها ، محیط ، مساحت ، شعاع دایره محیطی ، شعاع های دایره ای محاطی داخلی و خارجی ، و... ) هر گاه سه جزء مثلثی را بدانیم. می توانیم مثلث را رسم کنیم و جزء های دیگر را بدست آوریم . یافتن جزءهای مجهول مثلث را از روی جزء های آن حل مثلث می نامیم .
تعریف : مثلثات بخشی است از دانش ریاضی که برای حل مثلث های گوناگون به کار می رود .
مثال 1 :در مثلث قائمالزاویهی داریم و می خواهیم وتر BC را بیابیم .
با استفاده از فرمول فیثاغورس داریم :
|
در نتیجه ، ولی در هندسه چگونه می توان زاویه های B و C را دقیقاً محاسبه کرد ؟
هندسه از این محاسبه عاجز است . تنها راه این است که مثلث را به دقت رسم کنیم و زاویه های B و C را اندازه یگیریم . واضح است که این اندازه گیری هرگز از لحاظ ریاضی دقیق نیست . با اندازه گیری بسیار دقیق تقریباً به دست می آوریم . و
در این مثال ، وتر BC را به کمک فرمول فیثاغورس محاسبه کردیم . هدف اصلی مثلثات یافتن رابطه هایی است نظیر رابطه فیثاغورث میان ضلع ها ، زاویه ها ، و جزء های فرعی مثلث ، تا بتوانیم جزء های مجهول را به کمک جزء های معلوم به دست آوریم . پیش از پرداختن به این رابطه ها ، ابزاری را که برای این کار لازم است بررسی کنیم .
زاویه ی معین و معلوم A را در نظر می گیریم . روی یک ضلع این زاویه ، نقطه های و و و ... رال به دلخواه انتخاب می کنیم و عمودهای BC و و را بر ضلع دیگر فرود می آوریم (شکل 2) .
بنابر قضیه ی تالس داریم مقداری ثابت
اگر زاویه A مثلاً باشد . این نسبت برابر 5/0 است و اگر زاویه ی A برابر باشد ، این نسبت برابر 9511/0 است . این عدد ثابت را سینوس زاویه ی A ، با علامت اختصاصی «sinA» می نامند .
پس ، و