| دسته بندی | زمین شناسی |
| بازدید ها | 19 |
| فرمت فایل | doc |
| حجم فایل | 36 کیلو بایت |
| تعداد صفحات فایل | 24 |
مقدمه
تمام فاضلابهای صنعتی به نحوی بر محیط زیست اثر می گذارند، هنگامیکه در نتیجه این تاثیر دیگر نتوان محیط زیست را به منظور بهترین بنزین کاربرد آن مورد استفاده قرار داد،. می گویند آلودگی بوجود آمده است.
تفاوتهای زیادی چه از نظر کمی و چه از نظر کیفی بین فاضلابهای صنعتی و فاضلاب شهری وجود دارد از جمله اینکه میزان آلودگی فاضلابهای صنعتی می تواند از مقادیر بسیار کم تا بیش از دهها هزار میلی گرم در لیتر باشند. کیفیت فاضلاب صنعتی از نظر زمانی نیز دارای تفاوتهایی است و در هر دوره بهره برداری دچار تغییراتی می گردد. پس می توان گفت یکی از مهمترین عوامل آلودگی های زیست محیطی تخلیه فاضلابهای صنعتی به محیط زیست است، متاسفانه امروزه به دلیل گسترش صنایع و بکارگیری سالیانه هزاران ترکیب شیمیایی جدید در صنایع و ورود قسمتی از آن ترکیبات از طریق تخلیه فاضلابها، به محیط زیست، برپیچیدگی مسایل آلودگی افزوده شده و مبارزه با آن را دشوار تر کرده است. یکی از صنایعی که تولید و تخلیه فاضلاب آن مشکلاتی را از نظر آلودگی محیط زیست در کشور ها بوجود آورده فاضلاب صنایع لبنی هستند.
بطور کلی صنایع لبنی به فرآورده های متنوعی نظیر شیر پاستوریزه، پنیر، خامه، کره، ماست،... و اطلاق می شود که طی فرآیند های متفاوتی در چرخه تولید، از شیر خام تهیه شده و پس از طی مراحل و آزمایشات مختلف میکرو بیولوژیکی، در دسترس عموم قرار می گیرد و طبیعتا پساب خروجی حاصل از فعل و انفعالات این صنایع نیز بدلیل وفور مواد غذائی و آلودگی بالا، مخاطراتی از جهت زیست محیطی بهمراه دارد.
2- منابع و مقادیر تولید فاضلاب
منابع تولید فاضلاب در صنابع لبنی عبارتند از :
فاضلاب صنعتی (فاضلاب حاصل از فرایند تولید)
فاضلاب انسانی (فاضلاب بهداشتی تولیدی پرسنل)
2-1- منابع تولید فاضلاب صنعتی در صنایع لبنی شامل مواد ذیل می باشند.
الف- فاضلاب ناشی از کندانسورها، پاستوریزورها و خنک کننده ها که بعلت فقدان مواد آلی، عدم آلودگی خاص و ثابت بودن کیفیت می تواند به منظور کاهش حجم فاضلاب تولیدی از سایر فاضلابها جدا گردد و سپس بدون انجام عملیات تصفیه ضمن اختلاط با فاضلاب تصفیه شده خروجی به منابع پذیرنده تخلیه گردد. البته فاضلاب مذکور از نظر درجه حرارت بالا می تواند تغییراتی را در اکوسیستم منبع پذیرنده ایجاد نماید.
ب- فاضلاب ناشی از عملکرد دستگاههای خط تولید، به عبارتی فرآیند تولید که به صورت دائم یا غیر دائم تولید می گردد میزان این فاضلاب و مقادیر کیفی آن بسته به شرایط تولید و نوع محصول و تعداد شیفت کاری کارخانه می تواند متغیر باشد، بیشترین آلودگی ناشی از فاضلاب صنایع لبنی مربوط به این قسمت است.
به طوری که در صنایع لبنی که به تولید پنیر نیز اشتغال دارند آب پنیر حاصل از فرآیند تولید مقادیر قابل توجهی اسید لاکتیک، لاکتوز چربی و مواد معلق دارد که این مواد مقدار اکسیژن مورد نیاز بیوشیمیایی در (BOD) فاضلاب را افزایش می دهد.
ج- فاضلاب ناشی از شستشوی دستگاهها- مخازن- لوله های خط تولید که در طی فرآیند یا پایان هر شیفت کاری تولید می گردد کیفیت این نوع فاضلاب به گونه ای است که بیشترین آلودگی را ایجاد می کند و فاضلاب آن حاوی درصد بالایی چربی مواد آلی محلول و نامحلول، مواد معلق و PH متغیر بعلت استفاده از مواد شیمیایی و سیستم CIP جهت شستشوی دستگاهها و می باشد.
د- فاضلاب ناشی از شستشو کف سالن های تولید که پایان هر شیفت کار تولید می گردد. و حاوی ذرات چربی، مواد آلی محلول، مواد معلق، ودترجفت ها می باشد
2-2 فاضلاب های انسانی تولید شده:
این نوع فاضلاب ناشی در اثر استفاده از دستشویی ها، حمام، آشپزخانه و سایر مصارف انسانی پرسنل شاغل در کارخانه تولید می گردد که مقدار آن با توجه به تعداد پرسنل شاغل و میزان سرانه مصرف مشخص می گردد.
شمای خط تولید و چگونگی تولید فاضلاب در کارخانه لبنی نیلوفر روز:
به منظور آشنایی با منابع فاضلاب کارخانه نیلوفر روز مراحل مختلف عملیات تولید بشرح زیر بیان می گردد.
شیر پس از انتقال به کارخانه در دو مخزن که هر کدام دارای به ظرفیت 10000 لیتر (جمعا 20000 لیتر) می باشد تخلیه شده و سپس با انجام مراحل کار عمل پاستوریزاسیون شیر را انجام داده و بمنظور انجام سایر مراحل مورد استفاده قرار می گیرد.
بخشی از شیر پاستوریزه شده به منظور تولید شیر مدارس به محل بسته بندی منتقل می گردد در آنجا لیوانهای شیر به ظرفیت حدود 200 سی سی پر خواهد شد، البته در حین کار بمنظور نظافت و پاکیزگی ناشی از سرریز شدن شیر بروی دستگاه از محلول پرکلرین3/0 درصد برای شستشو استفاده می گردد. علاوه بر این سایر محصولات کارخانه عبارتند از شیر کم چرب (5/2 درصد چربی)، ماست، دوغ که مستقیما از ماست تهیه می گردد.
بخش قابل توجهی از فاضلاب تولیدی کارخانه ناشی از شستشوی سالن تولید هفته ای یکبار کل دستگاهها و سالن تولید می باشد با محلول هالامیر 3/0 درصد بصورت اسپری شستشو می گردد و علاوه بر آن در انتهای هر شیفت کاری سالن مورد شستشو قرار می گیرد بطوریکه شیفت کاری از ساعت 8 صبح شروع شده و تا ساعت 14 ادامه دارد و پس از آن حدود 2 ساعت برای شستشو سالن، دستگاههای بسته بندی و .... زمان صرف می گردد
.آب مورد نیاز در کارخانه از چاه موجود تامین و و پس از کلرزنی با محلول پرکرین همراه با 09/0 درصد کلر بداخل مخزن تخلیه و از طریق مخزن هوایی فشار لازم تامین می گردد، روزانه 60 متر مکعب آب مصرف می گردد که از این میزان 10 متر مکعب مربوط آب کندانسها و آب داغ بوده و 50 متر مکعب آن مربوط به عمل شستشو و نظافت می باشد.
برای شستشو از محلول آب داغ، بادر حرارت 95 درجه سانتی گراد همراه با NAOH،HNO3 2 درصد استفاده می شود، این محلول شستشو در مخازنی که هر کدام 500 لیتر ظرفیت دارند نگهداری می شود گاهی در یک روز دو مرتبه کل سیستم شستشو می گردد در طرح نهایی کارخانه حجم مخازن فوق دو برابر شده و بدین ترتیب آب استفاده شده در عملیات شستشو حدود 6000 لیتر خواهد شد.
در صورت وجود مشکلی در خرید و دانلود این فایل به صورت 24 ساعته با من در ارتباط باشید @wwwlonoirآی دی تلگرام 09214087336شماره تماس پشتیبانی این فایل :
| دسته بندی | زمین شناسی |
| بازدید ها | 48 |
| فرمت فایل | doc |
| حجم فایل | 572 کیلو بایت |
| تعداد صفحات فایل | 11 |
طراحی و شبیهسازی ستونهای نمزدایی پالایشگاه گاز خانگیران
چکیده:
گاز طبیعی یک منبع مهم انرژی است که تحت شرایط تولید طبیعی از بخار آب اشباع میشود. بخار آب خورندگی گاز طبیعی را افزایش میدهد، بخصوص وقتی گازهای اسیدی نیز در آن وجود داشته باشد. روشهای گوناگونی جهت خشک کردن گاز طبیعی میتواند استفاده شود.
مقدمه
گاز طبیعی با توجه به نوع مخازنی که از آن تولید میشود، ممکن است اجزای ناخواسته گوگردی خصوصاً H2S و بخار آب را به همراه داشته باشد. ترکیبات سمی گودگردی بخصوص H2S طی عملیات تصفیه از گاز جدا میگردد. بخار آب نیز طی عملیات نمزدایی از گاز جدا میشود. آب مایع و یا بخار آب به دلایل عمده زیر باید از گاز طبیعی جدا شوند:
جلوگیری از تشکیل هیدراتها در خطوط انتقال؛
رسیدن به نقطه شینم موردنظر جهت فروش؛
جلوگیری از خوردگی داخل لولهها.
عمل نمزدایی در پالایشگاهع گاز خانگیران توسط ستونهای حاوی جاذب سطحی موبیل سوربید به دلیل ظرفیت بالای آنها برای جذب آب و همچنین احیا در دمای پایین صورت میگیرد. موبیل سوربید ظرفیت بالایی جهت جذب پنتان و هیدروکربنهای سنگینتر داشته و میتواند جهت تنظیم نقطه شبنم گاز خروجی و رساندن آن به مشخصات استاندارد خطوط لوله بکار رود.
کاربرد و استفاده از هر فرآیندی (از قبیل جذب، جذب سطحی، سرد کردن، فشردهسازی و یا استفاده از کلرید سدیم) جهت نمزدایی گازهای طبیعی دارای خصوصیات منحصر بفرد خود میباشد.
کلیه این روشها دارای مزایا و معایبی بوده و انتخاب هر یک از آنها باید با توجه به شرایی خاص فرآیند کلی بررسی گردد.
مزایا و معایب استفاده از ستونهای جذب سطحی به صورت خلاصه به شرح زیر ارائه میشود:
مزایا:
دستیابی به نقاط شبنم پایین تا 150 درجه فارنهایت را میسر میکند.
تغییرات کوچک فشار، دما و سرعت جریان گاز در عملکرد آنها بیتاثیر است.
حساسیت آنها نسبت به پدیدههای خوردگی و کفزایی اندک است.
معایب:
هزینههای ثابت عملیاتی بالا و همچنین افت فشارهای بیشتری دارند.
امکان مسموم شدن جاذبها توسط هیدروکربنهای سنگین، هیدروژن سولفید، کربن دیاکسید کربن و غیره وجود دارد.
امکان شکستگی مکانیکی ذرات جاذب خشککن وجود داردو
وزن بالا و نیاز به فضای زیاد.
مقدار انرژی مورد نیاز برای احیای آنها زیاد بوده و در ضمن هزینه واحدهای جانبی آنها نیز بالاست.
جاذب موبیل سوربید
موبیل سوربید شامل 97% سیلیکا و 3% آلومینا میباشد. ظرفیت جذب آن اساساً همانند سیلیکاژل معمولی بوده، اما دانسیته توده آن و همچنین ظرفیت جذب آن به ازای هر واحد حجم کمی بیشتر از سیلیکاژل معمولی میباشد.
در واقع موبیل سوربید یک نوع سیلیکاژل اصلاح شده و پیشرفته به شکل دانههای سخت کروی و نیمهشفاف است که این دانهها گرچه غیرقابل نفوذ به نظر میرسند، در حقیقت مشبک میباشند و در حفرههای میکروسکوپی بسیار زیادی وجود دارد که بخار در این حفرهها بدام افتاده و مایع میگردد. حفرهها در موبیل سوربید آنقدر زیاد است که یک پوند از آن دارای سطحی معادل 300000ft2 یا بیشتر از آن میباشد.
سوربیدها غیرخورنده بوده و تحت شرایط ایستا حدود 40% وزن خود آب جذب میکنند. در بعضی از شرایط امکان ورود آب مایع به بستر خشک کننده وجود دارد. چون فعالیت موبیل سوربید نوع R, H بسیار زیاد است، آب مایع میتواند سبب شکستن دانهها شود. برای محافظت بستر خشک کننده از آب به صورت مایع، میتوان از سوربید نوع W استفاده کرد. این نوع سوربید با آنکه دارای شرایطی (از نظر ترکیب و خواص فیزیکی) شبیه به نوع R, H میباشد، در حضور آب مایع نمیشکند. نوع W در رطوبتهای نسبتاً بالا به اندازه R موثر است، اما این بازدهی در رطوبتهای نسبی پایین کاهش مییابد. بنابراین استفاده از نوع W در تمام بستر پیشنهاد نمیشود.
طراحی واحد نمزدایی
سیستمهای نمزدایی از نظر خشک کردن گاز تقریباً یکسان عمل میکنند و تفاوت اساسی این سیستمها، نحوه احیای بستر اشباع میباشد. بستر مواد جاذب با دریافت حرارت احیا میشود و کلیه موادی که جذب شده، به صورت بخار از آن خارج میشوند. احیای بسترهای کوچک مواد جاذب با یک کویل گرم کننده برقی نیز امکانپذیر است، اما برای بسترهای بزرگتر احیای بستر بوسیله جریانی از گاز داغ صورت میگیرد. در شکل زیر، سیستم نمزدایی پالایشگاه گاز خانگیران نشان داده شده است. در این شکل بسترهای اول و دوم بطور موازی عمل نمزدایی گاز را انجام میدهند و بستر سوم با جریانی از گاز مرطوب در وضعیت خنک شدن قرار دارد و گاز خروجی از آن پس از گرم شدن در کوره گاز احیا و رسیدن به دمای موردنظر احیای بستر چهارم را انجام میدهد.
این چرخه پس از زمان معینی به اتمام میرسد و وضعیت دیگری به خود میگیرد، به گونهای که بستر سوم پس از خنک شدن در وضعیت سرویس نمزدایی قرار میگیرد و بستر چهارم پس از گرم شدن و از دست دادن مواد جذبی در وضعیت سرد شدن قرار میگیرد. بستر اول پس از دو تعویض که ع
در صورت وجود مشکلی در خرید و دانلود این فایل به صورت 24 ساعته با من در ارتباط باشید @wwwlonoirآی دی تلگرام 09214087336شماره تماس پشتیبانی این فایل :
| دسته بندی | زمین شناسی |
| بازدید ها | 17 |
| فرمت فایل | doc |
| حجم فایل | 34 کیلو بایت |
| تعداد صفحات فایل | 21 |
عنوان:
کارگاه عملیات واحد (قسمت جداسازی گازها)؛
عملیات و قسمت جداسازی مایعات.
موضوع:
فرآیندهای جداسازی غشایی
در بسیاری از فرآیندهای جداسازی مخلوطهای گاز یا مایع، از غشاهای نیمه تراوا استفاده میشود که امکان عبور یک یا چند جز مخلوط را راحتتر از بقیه اجزا فراهم میسازد. غشاها ممکن است لایههای نازک مادهای سخت مثل شیشه متخلخل یا فلز آبدیده باشند، اما اغلب از فیلمهای قابل انعطاف پلیمرهای مصنوعی استفاده میشود که برای این منظور تهیه شدهاند و در برابر بعضی از مولکولها تراوشپذیری زیاد دارند.
جداسازی گازها
غشاهای متخلخل
اگر مخلوط گازی از میان غشا متخلخلی به منطقهای با فشار کمتر نفوذ کند، گازی که در غشا نفوذ میکند، غنی از اجزای با وزن مولکولی کمتر است، چون آن اجزا سریعتر نفوذ میکند. اگر منافذ خیلی کوچکتر از میانگین پویش آزاد در فاز گاز (در حدود 1000Ao در شرایط استاندارد) باشند، گازها به صورت مستقل از یکدیگر به روش نفوذ نودسن نفوذ میکنند و نفوذپذیری درون سوراخ با اندازه آن و میانگین سرعت مولکولی نسبت عمکس و با ریشه دوم وزن مولکولی M، نسبت مستقیم دارد. برای نفوذ نودسن، گاز A در منافذ استوانهای رابطه زیر را داریم:
DA = 9700r (T/MA)0.5
در معادله 26-1، r شعاع میانگین منفذ بر حسب سانتیمتر، T دمای مطلق بر حسب کلوین و DA بر حسب cm/s2 است.
شار در واحد سطح غشا بستگی به نفوذپذیری موثر De دارد که به نسبت از نفوذپذیری منفذ کمتر است که درصد تخلخل و ضریب پیچخوردگی است. در غشاهای با تخلخل حدود 50%، این ضریب معمولاً 2/0 تا 3/0 است:
شار هر گاز متناسب با گرادیان غلظت است که اگر ساختمان غشا یکنواخت باشد و گازهای اثر متقابل بر یکدیگر نداشته باشند، خطی است. معمولاً این گرادیان را به صورت گرادیان فشار بیان میکنند و فرض میشود گازها ایدهآل هستند:
ترکیب ماده تراوش کننده بستگی به شار همه موارد دارد. در سیستمی دو جزئی، کسر مولی A در ماده تراوش کننده عبارت است از:
از گرادیان فشار در غشایی که در تماس با مخلوطی دو جزئی هم مولار واقع شده، در شکل 26-1، نشان داده شده است. در این مورد فرض میشود که نفوذپذیری گاز A دو برابر نفوذپذیری گاز B (مل هلیم و متان) و فشارهای جریان بالایی و پایینی به ترتیب 4/2 و 1 اتمسفر است. 60% ماده نفوذ کننده را A تشکیل میدهد که نسبت به غلظت 50%A در خوراک فقط کمی بیشتر غنی شده است. غنی شدن، گرادیان A را کمتر از گرادیان B میکند (8/0=4/0-2/1=∆PB؛ 6/1=6/0-2/1=∆PA)، لذا شار A فقط 5/1=(8/0÷6/0)×2 برابر شار B است که باعث میشود ماده تراوش کننده دارای 60%A باشد. اگر فشار خوراک بیشتر یا فشار طرف نفوذ کننده غشا کمتر از فشار اتمسفر باشد، ماده تراوش کننده کمی از A غنیتر میشود. با متراکم کردن ماده تراوش کننده و فرستادن آن به یک واحد غشایی دیگر، مقدار کمتری از محصول خالصتر به دست میآید. مجموعهای از مراحل با جریان یا چرخه مجدد را برای بدست آوردن محصولات تقریباً خالص میتوان طراحی کرد، اما هزینه تراکم در هر مرحله معمولاً چنین فرآیندهایی را بسیار پرهزینه میسازد.
مثالی کاملاً شناخته شده، از جداسازی گاز به وسیله غشاهای متخلخل و شاید تنها کاربرد آن در مقیاس وسیع جداسازی ایزوتوپهای اورانیوم با استفاده از هگزافلونوریدها 238UF, 235UF است. چون اورانیوم طبیعی فقط 7/0% 125U دارد و نفوذپذیری هگزافلوئوریدها فقط 4/0% است، بیش از هزار مرحله لازم است تا محصولی با 4% 235UF و باقیماندهای با 25/0% 235UF بدست آید.
غشاهای پلیمری
انتقال گازها درون غشاهای پلیمری متراکم (غیرمتخلخل) با مکانیسم انحلال ـ نفوذ صورت میگیرد. گاز در ظرف پرفشار غشاها در پلیمر حل میشود و در فاز پلیمر نفوذ میکند و در طرف کم فشار دفع یا تبخیر میشود. سرعت انتقال جرم بستگی به گرادیان غلظت در غشا دارد که اگر انحلالپذیری متناسب با فشار باشد، با گرادیان فشار در غشاء متناسب است. اختلاف گرادیانهای یک مخلوط دو جزئی در شکل 26-2 نشان داده شده است. به فرض قانون هنری در مورد هر گاز صادق و در سطح مشترک تعادل برقرار است. در این مورد از مقاومت گاز ـ فیلم صرفنظر شده و در نتیجه، فشارهای جزئی در سطح مشترک گاز ـ پلیمر مثل فشارهای جزئی در کل مخلوط است. شار در گاز A برابر است با:
غلظتهای با یک ضریب انحلالپذیری S که واحدهایی همچون mol/cm2-atm دار، به فشارهای جزئی مربوط هستند (S عکس ضریب قانون هنری است):
با استفاده از معادله فوق و تعویض گرادیان غلظت با گرادیان فشار، معادله زیر بدست میآید:
حاصل ضرب DASA، شار در واحد گرادیان فشار است که به آن تراوشپذیری در غشا qA میگویند و اغلب برحسب Barrer بیان میشود. چون در غشاهای موجود در بازار، ضخامت واقعی غشا همیشه معلوم نیست یا مشخص نشده است، اغلب از شار در واحد اختلاف فشار استفاده میشود که تراوشپذیری QA نام دارد:
واحدهای مناسب برای QA برابر std ft3/ft2-h-atm یا L(STP)/m2-h-atm است. در استفاده از مقادیر منتشر شده، تراوشپذیری واحد 4 را باید به دقت امتحان کرد، چون تعاریف مختلفی برای این منظور بکار میرود.
در صورت وجود مشکلی در خرید و دانلود این فایل به صورت 24 ساعته با من در ارتباط باشید @wwwlonoirآی دی تلگرام 09214087336شماره تماس پشتیبانی این فایل :